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CHAPTER 5 

Recent Developments for Modeling 

In addition to the architectures and approaches identified by Pew and Mavor (1998) , 
there are a few other architectures that are worth examining. In this chapter we note them, 
including the lessons they provide. Our reviews also explicitly consider ease of use         
(i.e., model populating). 

We focus our comments on cognitive architectures because they have been created for 
modeling the strengths and limitations of human behavior. Any system built for other 
reasons that was adapted in this way—for example, other AI systems—would start to 
approach these systems in capabilities and limitations. It is quite likely that the cognitive 
architecture that best matches human behavior will vary by the type of behavior and level of 
aggregation. For example, different architectures will be preferred for modeling a soldier 
performing simple physical tasks than for a deliberate and reflective commander. 

There will continue to be a range of architectures created. We agree completely with 
Pew and Mavor (pp. 110-111) that further work is necessary before settling on an 
architecture. That is not to say that architectures will not continue to converge (e.g., Soar 
and EPIC, Chong, 2001, and Soar and ACT-R, Jones, 1998). We start, however, by 
examining ways to summarize data and some advanced AI techniques to help create models. 
We then examine several architectures. 

5.1 Data Gathering and Analysis Techniques 

Scattered throughout Pew and Mavor (e.g., pp. 323-325) are comments about the need 
for data to develop and test models. Data to develop models can come from a wide variety 
of sources. Data can come from speaking to experts and having them do tasks off-line, so-
called knowledge acquisition (Chipman & Meyrowitz, 1993; Schraagen, Chipman, & 
Shalin, 2000; Shadbolt & Burton, 1995). Data can also come from having experts talk aloud 
while performing the task (Ericsson & Simon, 1993). Talking aloud is a more accurate way 
to acquire the knowledge because it is based on actual behavior rather then someone’s 
impression and memory of behavior. It is, however, a more costly approach because the 
modeler must infer the behavior generators. Data for developing models can also come from 
non-verbal measurements of experts while they perform the task. Non-verbal measurements 
are probably the least useful data (but still useful in some circumstances) for developing 
models. These data are useful, however, in testing models that make timing predictions. 
Data can also come from previously run studies, reviews, and compendia of such studies 
(e.g., Boff & Lincoln , 1988 SeKular & Blake, 1994). A useful review of data types and 
analysis methods in this area is provided by Hoffman (1987). 

A major requirement will be a balance between the experimental control of the lab and 
the richness of the real world. An appropriate balance can sometimes be achieved by 
gathering data in the same micro-world simulations in which the models will be deployed, 
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such as synthetic environments. These environments can be used to model all the salient 
aspects of the real world, while still providing some level of experimental control.  

Once the data are in hand, they will often have to be aggregated or summarized. Expert 
summaries from knowledge acquisition already represent summarized data, but the field of 
verbal protocol analysis has developed a wide range of techniques for summarizing such 
data.  

Reviews and suggestions in this area are available (Ericsson & Simon, 1993; Sanderson 
& Fisher, 1994), but there exists a very wide range of techniques that vary based on how 
advanced the theory is, the purposes of the research, and the domain. Survival analysis is 
one example of an advanced technique to examine protocol data for temporal patterns for 
later inclusion and comparison against model behavior (Kuk, Arnold, & Ritter, 1999). 

With data in hand, the next step is either to develop a model or to test an existing model. 
There is little formal methodology about how to create models. Some textbooks attempt to 
teach this creative task either directly (vanSomeren, Barnard, & Sandberg, 1994) or by 
example (McClelland & Rumelhart, 1988; Newell & Simon, 1972). There are summaries of 
the testing process (Ritter & Larkin, 1994) and of some possible tests (Ritter, 1993a). 
Tenney and Spector (2001); and Ritter and Bibby (2001) provide particularly useful 
example sets of comparisons. Repairing a model based on the results of the tests can be a 
task requiring a lot of creativity. 

5.2 Advanced AI Approaches 

There are some existing AI tools that could be used to create, augment, or optimize 
models of performance. We note here three tools with which we are particularly familiar. 
These include approaches for creating behaviors, such as genetic algorithms and traditional 
AI-planning programs. 

5.2.1 Genetic Algorithms 

Genetic Algorithms (GAs) are search methods that can be used in domains in which no 
heuristic knowledge is available and an objective function exhibits high levels of 
incoherence (Goldberg, 1989). That is to say, a small change to the solution state may often 
result in large changes to the objective function or fitness measure. These algorithms are 
expensive in machine resources and exhibit slow (but often steady) convergence to a 
solution. They might be used as a search strategy of last resort for plan formation. 

GAs are a family of algorithms loosely based on Darwinian evolution. They optimize 
functions without assuming that the search space will be linear. They start with a 
population of templates for possible solutions (analogous to sets of chromosomes), and 
evaluate them to determine how well they perform (fitness). After the fitness values are 
computed, a new population is created. A variety of methods have been used to create the 
next generation, but in each case the underlying principle has been to include copies of the 
chromosomes proportional to their fitness, and at each generation to create new 
combinations by combining two parents’ chromosomes. The cycles of evaluation and 
creation are then repeated. 
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Heuristics can be used with GAs to seed the initial population in a non-random way or 
to guide the crossover process in a way that changes the distribution of offspring. Using 
heuristics results in a memetic algorithm (one that manipulates basic blocks of information 
or memes). As has been common experience throughout the history of AI, this introduction 
of domain knowledge can drastically transform the performance of the GA. Such algorithms 
have been found to exceed the performance of previous approaches in a number of domains 
(Burke, Elliman, & Weare, 1995). There may be reason for using GAs as a search strategy 
in planning.  

5.2.2 Tabu Search 

Tabu search, as developed by Glover (Glover & Laguna, 1998), is a general purpose 
approach remarkably effective for difficult problems where the objective function has some 
local coherence. It is surprising how often hill-climbing approaches such as the A* 
algorithm are used in current plan-building algorithms, despite the domains being prone to 
local maxima. Tabu search uses the novel concept of recency memory to prevent moves in a 
solution space from being tried when some component of that state has recently been 
changed in a previous move. This surprisingly simple idea forces the search away from a 
local maximum. Long-term memory is used to hold the best solution state found so far and 
this knowledge may be used to restart the search far away from any previous exploration of 
the state space.  

The Tabu search approach would almost certainly lead to improved solutions with 
reasonable computational complexity. It would be worth using this approach to search for 
strategies and plans at various levels in a synthetic environment from the individual 
combatant to the highest level source of command and control. 

Soar is impressive in its ability to reuse parts of problems that have been solved in the 
past and to plan in a goal-directed way that can seem ingenious. Real human problem 
solving can be less structured, however, and can leap from one approach to another in a 
manner that is difficult to model. Tabu search has this characteristic, however, as part of its 
diversification strategy. Including Tabu search in a cognitive architecture would be 
interesting. There may be some advantages to be gained by grafting on other similar systems 
that modify the beliefs of a cognitive architecture so as to maintain various types of logical 
consistency in the set of facts held. 

5.2.3 Multiple Criteria Heuristic Search1 

Heuristic search, one of the classic techniques in AI, has been applied to a wide range of 
problem-solving tasks including puzzles, two-player games, and path-finding problems. A 
key assumption of all problem-solving approaches based on utility theory, including 
heuristic search, is that we can assign a single utility or cost to each state. This, in turn, 
requires that all criteria of interest can be reduced to a common ratio scale. 

                                                 
1This section was drafted by Brian Logan and revised by the authors.  
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The route-planning problem has conventionally been formulated as one of finding a 
minimum-cost (or low-cost) route between two locations in a digitized map, where the cost 
of a route is an indication of its quality (e.g., Campbell, Hull, Root, & Jackson, 1995). In 
this approach, planning is regarded as a search problem in a space of partial plans, allowing 
many of the classic search algorithms such as A* (Hart, Nilsson, & Raphael, 1968) or 
variants such as A*epsilon (Pearl, 1982) to be applied. However, while such planners are 
complete and optimal (or optimal to some bound e), formulating the route-planning task in 
terms of minimizing a single criterion is difficult. 

For example, consider the problem of planning a route in a complex terrain of hills, 
valleys, impassable areas, and so on. A number of factors will be important in evaluating the 
quality of a plan: the length of the route, the maximum negotiable gradient, the degree of 
visibility, and so on. In any particular problem, some of these criteria will affect the 
feasibility of the route, while others are simply preferences. Route planning is an example of 
a wide class of multi-criteria, problem-solving tasks, where different criteria must be traded 
off to obtain an acceptable solution. 

One way of incorporating multiple criteria into the problem-solving process is to define 
a cost function for each criterion and use, for example, a weighted sum of these functions as 
the function to be minimized. We can, for example, define a visibility cost for being exposed 
and combine this cost with cost functions for the time and energy required to execute the 
plan to form a composite function that can be used to evaluate alternative plans. However, 
the relationship between the weights and the solutions produced is complex in reality, and it 
is often unclear how the different cost functions should be combined linearly as a weighted 
sum to give the desired behavior across all magnitude ranges for the costs. This makes it 
hard to specify what kinds of solutions a problem-solver should produce and hard to predict 
what a problem solver will do in any given situation; small changes in the weight of one 
criterion can result in large changes in the resulting solutions. Changing the cost function on 
a single criterion to improve the behavior related to that criterion often leads to changing all 
the weights for all the other costs as well because the costs are not independent. Moreover, 
if different criteria are more or less important in different situations, we need to find sets of 
weights for each situation. 

The desirability of trade-offs between criteria is context-dependent. In general, the 
properties that determine the quality of a solution are incommensurable. For example, the 
criteria may only be ordered (on an ordinal scale), with those criteria that determine the 
feasibility of a solution being greatly preferred to those properties that are merely desirable. 
It is difficult to see how to convert such problems into a multi-criterion optimization 
problem without making ad hoc assumptions. It is also far from clear that human behavior 
solely optimizes on a single criterion. 

Rather than attempt to design a weighted-sum cost function, it is often more natural to 
formulate such problems in terms of a set of constraints that a solution should satisfy. We 
allow constraints to be prioritized, that is, it is more important to satisfy some constraints 
than others, and soft, that is, constraints are not absolute and can be satisfied to a greater or 
lesser degree. Such a framework is more general in admitting both optimization problems 
(e.g., minimization constraints) and satisficing problems (e.g., upper-bound constraints), 
which cannot be modeled by simply minimizing weighted-sum cost functions. Vicente 
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(1998) suggests ways in which such constraints can be analyzed as part of a work       
domain analysis. 

This approach to working with constraints provides a way for more clearly specifying 
problem-solving tasks and more precisely evaluating the resulting solutions. There is a 
straightforward correspondence between the real problem and the constraints passed to the 
problem-solver. A solution can be characterized as satisfying some constraints (to a greater 
or lesser degree) and only partially satisfying or not satisfying others. By annotating 
solutions with the constraints they satisfy, the implications of adopting or executing the 
current best solution are immediately apparent. The annotations also facilitate the 
integration of the problem-solver into the architecture of an agent or a decision-support 
system (see for example, Logan & Sloman, 1998). If a satisfactory solution cannot be found, 
the degree to which the various constraints are satisfied or violated by the best solution 
found so far can be used to decide whether to change the order of the constraints, relax one 
or more constraints, or even redefine the goal, before making another attempt to solve         
the problem. 

The ordering of constraints blurs the conventional distinction between absolute 
constraints and preference constraints. All constraints are preferences that the problem-
solver will try to satisfy, trading off slack on a more important constraint to satisfy another, 
less important constraint. 

The A* search algorithm is ill-suited to dealing with problems formulated in terms of 
constraints. Researchers at Birmingham have therefore developed a generalization of A* 
called A* with Bounded Costs (ABC; Alechina & Logan, 1998; Logan & Alechina, 1998), 
which searches for a solution that best satisfies a set of prioritized soft constraints. 

The utility of this approach and the feasibility of the ABC algorithm have been 
illustrated by an implemented route planner that is capable of planning routes in complex 
terrain satisfying a variety of constraints. This work was originally motivated by difficulties 
in applying classical search techniques to agent-route planning problems. However, the 
problems identified with utility-based approaches, and the proposed solutions, are equally 
applicable to other search problems. 

5.3 Psychologically Inspired Architectures 

We review here several psychologically inspired cognitive architectures that were not 
covered by Pew and Mavor (1998). These architectures are interesting because (1) they are 
psychologically plausible, (2) some of them provide examples of how emotions and 
behavioral moderators can be included, and (3) several illustrate that better interfaces for 
creating cognitive models are possible. 

5.3.1 Elementary Perceiver and Memoriser 

The Elementary Perceiver And Memoriser (EPAM) is a well-known computer model of 
a wide and growing range of memory tasks. The basic ideas behind EPAM include 
mechanisms for encoding chunks of information into long-term memory by constructing a 
discrimination network. The EPAM model has been used to simulate a variety of 
psychological regularities, including the learning of verbal material (Feigenbaum & Simon, 
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1962, 1984) and expert digit-span memory (Richman, Staszewski, & Simon, 1995). EPAM 
has been expanded to use visuo-spatial information (Simon & Gilmartin, 1973). 

EPAM organizes memory into a collection of chunks , where each chunk is a meaningful 
group of basic elements. For example, in chess, the basic elements are the pieces and their 
locations; the chunks are collections of pieces, such as a king-side pawn formation. These 
chunks are developed through the processes of discrimination and familiarization. 
Essentially, each node of the network holds a chunk of information about an object in the 
world. The nodes are interconnected by links into a network with each link representing the 
result of applying a test to the object. When trying to recognize an object, the tests are 
applied beginning from the root node, and the links are followed until no further test can be 
applied. When a node is reached, if the stored chunk matches that of the object then 
familiarization occurs. The chunk’s resolution is then increased by adding more details of 
the features in that object. If the current object and the chunk at the node reached differ in 
some feature, then discrimination occurs, which adds a new node and a new link based on 
the mismatched feature. Therefore, with discrimination, new nodes are added to the 
discrimination network; with familiarization, the resolution of chunks at those nodes           
is increased. 

The Chunk Hierarachy and REtrieval STructures (CHREST; de Groot & Gobet, 1996; 
Gobet & Simon, 1996b) is one of the most current theories of memory developed from the 
ideas in EPAM. Gobet and Simon (2000) present a detailed description of the present 
version of CHREST and report simulations on the role of presentation time in the recall of 
game and random chess positions. As in the earlier chunking theory of Chase and Simon 
(1973), CHREST assumes that chess experts develop a large EPAM-like net of chunks 
during their practice and study of the game. In addition, CHREST assumes that some 
chunks, which recur often during learning, develop into more complex retrieval structures 
(templates) with slots for variables that allow a rapid encoding of chunks or pieces. 

EPAM and its implementations are important to consider because they fit a subset of 
regularities in memory very well. This at least serves as an example for other theories and 
architectures to emulate. It may also be possible to include the essentials of EPAM in 
another system, such as Soar or ACT-R, extending the scope of both approaches. 

5.3.2 Neural Networks 

Pew and Mavor (1998, chap. 3) review neural networks. Here, therefore, we only 
provide some further commentary, introduce some more advanced concepts, and note a few 
further applications.  

Connectionist systems have demonstrated the ability to learn arbitrary mappings. 
Architectures such as the Multi-Layer Perceptron (MLP) are capable of being used as a 
black box that can learn to recognize a pattern of inputs as a particular situation. This 
requires supervised training and may involve heavy computational resources to arrive at a 
successful solution using the back-propagation algorithm. Training can be continued during 
performance as a background task, and thus, an entity could have an ability to learn during 
action based on this approach. Recognition performance is relatively rapid and a multi-layer 
perceptron might be used to model a reaction mechanism in which a combatant responds to 
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coming under fire, or spotting the presence of the enemy, for example. It might also be used 
to activate particular aspects of military doctrine depending on the current circumstances. 

Recurrent nets such as the Elman (1991) net have the ability to generate sequences of 
tokens as output. These seem to offer some promise of detecting an input situation and 
producing a series of behavioral actions as a response. This behavior of recurrent nets may 
be useful for modeling the reactive behavior of an entity over a short time period, while a 
symbolic cognitive model is used for the higher-level cognitive processes that occur over a 
longer time span. 

5.3.3 Sparse Distributed Memories 

Subtle issues such as the tip-of-the-tongue phenomena (Koriat & Lieblich, 1974) and the 
fact that we know if we know something (feeling of knowing) before becoming aware of the 
answer are not often modeled (although, see Schunn, Reder, Nhouyvanisvong, Richards, & 
Stroffolino, 1997, for a counter example). These effects may be captured using memory 
models such as Kanerva ’s (1988) Sparse Distributed Memory (SDM), which has been put 
forward as a plausible model of brain architecture, particularly the cerebellum, as well as by 
Albus’s (1971) Cerebellar Model Arithmetic Computer (CMAC). 

The way in which a combatant’s experience of the world is stored and modeled is 
important. An SDM seems to offer powerful human-like ways of recalling nearest matches 
to present experience in a best-first manner. They have the interesting property of storing 
memories such that recall works by finding the best match to imperfect data . They are also a 
natural way of storing sequences. They exploit interesting mathematical properties of binary 
metric spaces with a large number of dimensions. It is intriguing that SDMs have the 
human-like properties that they “know if they know“ something before the retrieval process 
is complete. They also exhibit the tip-of-the-tongue phenomenon and replicate the human 
ability to recall a sequence or tune given the first few items or notes. They can also learn 
actuator sequences that might be used in muscle control or reflex patterns of behavior. This 
can even be seen as a kind of thinking by analogy that has a uniquely human-like ability to 
find a close match rapidly without exhaustive or even significant time spent in search. 

5.3.4 PSI and Architectures That Include Emotions 

PSI is a relatively new cognitive architecture designed to integrate cognitive processes, 
emotions, and motivation (Bartl & Dörner, 1998). The architecture includes six motives 
(needs for energy, water, pain avoidance, affiliation, certainty, and competence). Cognition 
is modulated by these motive/emotional states and their processes. In general, PSI organizes 
its activit ies similar to Rasmussen’s (1983) hierarchy: first, it tries highly automatic skills if 
possible, then it skips to knowledge-based behavior, and as its ultima ratio approach it uses 
trial-and-error procedures. It is one of the only cognitive architectures that we know about 
that takes modeling emotion and motivation as one of its core tasks. Its source code, in 
Delphi Pascal, is available (www.uni-bamberg.de/ppp/insttheopsy/psi-software.html). 

A model in the PSI architecture has been tested against a set of data  taken from a 
dynamic control task. The model performed the same task and its number of control actions 
was within the range of human behavior. Its predictions of summary scores were outside the 
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range of human behavior—the model was less competent (Detje , 2000)—but single 
subjects can be modeled by varying starting parameters (Dörner, 2000). In such a complex 
task as the “Island” scenario some people will use meta-cognition to improve their 
performance (particularly if they are encouraged to think aloud as they were in Detje’s 
study). The same data could reveal that these subjects profit from meta-cognition and that 
their behavior then differs from what is implemented currently in PSI (see Bartl, 2000, for 
a more detailed explanation). 

This model needs to be improved before it matches human emotional data as well as 
other cognitive models match non-emotional data. It is, however, one of the few models of 
emotion compared with data. 

The PSI architecture is currently incomplete, which raises interesting questions about 
how to judge a nascent architecture. PSI does not have a large enough user community and 
has not been developed long enough to have a body of regularities to be compared with let 
alone adjusted to fit. How can PSI be compared with the older architectures with existing 
tutorials , user manuals, libraries of models, and example applications? 

Several other models of emotions and architectures that use emotions have been created. 
Reviews of emotional models (Hudlicka & Fellous, 1996; Picard, 1997) typically present 
models and architectures that have not been compared and validated against human data. 
There appears to be one other exception, an unpublished PhD thesis by Araujo at the 
University of Sussex (cited in Picard, 1997). Some of us are attempting to add several 
simple emotions to ACT-R (Belavkin, 2001; Belavkin et al., 1999) and validate the model 
by comparing the revised model with an existing model and comparable data (G. Jones, 
Ritter, & Wood, 2000). 

5.3.5 COGENT 

COGENT is a design environment for creating cognitive models and architectures 
(Cooper & Fox, 1998). It allows the user to draw box-and-arrow diagrams to structure and 
illustrate the high-level organization of the model and to fill in the details of each box using 
one or a series of dialogue sheets. The boxes include inputs, outputs, memory buffers, 
processing steps, and even production systems as components. 

COGENT’s strengths are that it is easy to teach, the displays provide useful summaries 
of the model that help with explanation and development, and the environment is fairly 
complete. It appears possible to reuse components on the level of boxes. COGENT’s 
weaknesses are that it is fairly unconstrained; for large systems it may be unwieldy; and it 
might not interface well to external simulations. 

COGENT also shows that cognitive modeling environments can at least appear more 
friendly. The results of its graphic interface routinely appear in talks as model summaries. 
The interface is also quite encouraging to users, allowing them to feel that they can start 
working immediately. 
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5.3.6 Hybrid Architectures 

Hybrid architectures are architectures that typically include symbolic and non-symbolic 
elements. A more general definition would be architectures that include major components 
from multiple architectures. 

Hybrid architectures are mentioned briefly by Pew and Mavor (1998, pp. 108-110). 
Work has continued in this area with some interesting results. LICAI (Kitajima & Polson, 
1996; Kitajima, Soto, & Polson, 1998), for example, models how people explore and use 
interfaces based on a theory of how Kintsch’s (1998) schemas receive activation. The U.S. 
Office of Naval Research (ONR) has sponsored a research program on hybrid  architectures 
(Gigley & Chipman, 1999). This has given rise to some new, interesting hybrid architectures 
(e.g., Sun, Merrill, & Peterson, 1998; Wang, Johnson, & Zhang, 1998). 

Perhaps the most promising hybrids are melding perception components across 
cognitive architectures. The EPIC (Kieras & Meyer, 1997) architecture’s perception and 
action component has been merged with ACT-R’s perceptual-motor component, ACT-
R/PM (Byrne, 2001; Byrne & Anderson, 1998) and with Soar (Chong, 2001). This has led 
to direct reuse and unification. Similar results have been found with the Nottingham 
functional interaction architecture being used by Soar and ACT-R models (Bass et al., 1995; 
Baxter & Ritter, 1996; Ritter et al., 2000; G. Jones et al., 2000). 

5.4 Knowledge-Based Systems and Agent Architectures 

Agent architectures will be important within synthetic environments for modeling 
autonomous vehicles and for exploring the doctrine of autonomous vehicles. Most 
principled agent architectures have historical roots in distributed artificial intelligence. For 
several decades, distributed AI has been tackling essentially the same problem as 
Knowledge-Based Systems (KBS) research, namely, how to produce efficient problem-
solving behavior in software. The main concept that brings agency and KBS together is the 
idea of operation at the knowledge level as described by Newell (1982). 

The behavioral law used by an observer to understand the agent at the knowledge level 
is the principle of maximum rationality (Newell, 1982), which states, “If an agent has 
knowledge that one of its actions will lead to one of its goals, then the agent will select that 
action.” The modeling of intelligent artificial systems at the knowledge level, that is, with 
no reference to details of implementation, is a key principle in KBS construction. It is also at 
the heart of many assumptions in the tradition of explaining human behavior. 

Nwana (1996) claims that an important difference between agent-based applications and 
other distributed computing applications is that agent-based applications operate typically at 
the knowledge level, whereas distributed computing applications operate at the symbol 
level. At the symbol level, the entity is seen simply as a mechanism acting over symbols, 
and its behavior is described in these terms.  

The theoretical links between the motivations behind KBS and agent research can be 
seen in the main approaches taken to the definition of software agency. Ascriptional agency 
attempts to create convincing human-like behaviors in software in the belief that this will 
produce programs that are easy to interact with. This work can be seen as paralleling the 
expert behavioral modeling approach that is currently widely espoused in the KBS 
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community. The Belief-Desire-Intention (BDI) agents focus on the concept of 
intentiona lity—the mental attitudes of the agent. BDI models have been successfully 
implemented in systems such as the DESIRE framework (Brazier, Dunin-Keplicz, Treur, & 
Verbrugge, 1999) and the JAVA Agent Compiler and Kernel (JACK) component system 
(Busetta, Howden, Rönnquist, & Hodgson, 1999a; Busetta, Rönnquist, Hodgson, &     
Lucas, 1999b). 

JACK is an extension to JAVA. It includes a JAVA library and a compiler that takes a 
JAVA program with embedded JACK statements. A JAVA compiler expands/incorporates 
the JACK statements to create a runnable JAVA program. These statements implement a 
BDI architecture, while allowing JAVA statements to extend and implement them. The 
statements include commands like @achieve(condition, event), which subgoals on event if 
condition is not found to be true. 

The resulting program instantiates a BDI agent. Its BDI architecture is made up of 
beliefs represented with a database; desires represented as events that can trigger plans; and 
intentions represented through these plans. For example, a fact may come in from 
perception and match a desire, that of putting new facts into the database. This may result in 
further desires being matched and intentions (plans) leading to behaviors. Further 
information is available at the JACK developer’s website (www.agent-software.com.au). 

Reviews of the agent literature (Etzioni & Weld, 1995; Franklin & Graesser, 1997; 
Wooldridge & Jennings, 1995) 2 reveal that, when attempting to define agency as dependent 
on the possession of a set of cardinal attributes, many of the attributes suggested could also 
be seen as characteristic of behavior that is best explained at the knowledge level. These 
include abstraction and delegation, flexibility and opportunism, task orientation, adaptivity, 
reactivity, autonomy, goal-directedness, flexibility, collaborative and self-starting behavior, 
temporal continuity, knowledge-level communication ability, socia l ability, and cooperation. 

Both agent systems and KBSs are moving in the direction of modular components of 
expertise as a response to the problems of knowledge use and reuse to promote intelligent 
behavior in software. Domain ontologies form a significant subset of these KBS 
components. Increasingly, multi-agent systems are being produced that use such domain 
ontologies to facilitate agent communication at the knowledge level, for example , the agent 
network created as part of the Infosleuth architecture (Jacobs & Shea, 1996). Some agent 
systems also draw explicitly on models of problem-solving expert behavior developed in 
KBS research. The internet-based Multi-agent Problem Solving (IMPS) architecture (Crow 
& Shadbolt, 1998) uses software agency as a medium for applying model-driven knowledge 
engineering techniques to the internet. It involves software agents that can conduct 
structured online knowledge acquisition using distributed knowledge sources. Agent-
generated domain ontologies are used to guide a flexible system of autonomous agents 
driven by problem-solving models. 

                                                 
2 For online information about examples and related U.S. programs, see www.darpa.mil/ito/ResearchAreas.html and 

www.nosc.mil/robots/air/amgsss/mssmp.html. 
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5.5 Architectural Ideas Behind the Sim_Agent Toolkit3 

Since the early 1970s, Sloman and his colleagues have been attempting to develop 
requirements and designs for an architecture capable of explaining a wide variety of facts 
about human beings and other intelligent agents. Sloman’s ideas about cognitive 
architectures and the theoretically based agent architecture toolkit (Sim_Agent) provide 
useful lessons about architectural toolkits and about process models of emotions. Further 
information is available at the CogAff website (www.cs.bham.ac.uk/~axs/cogaff.html). 

5.5.1 Cognition and Affect 

A human-like information processing architecture includes many components 
performing different functions all of which operate in parallel, asynchronously. This is not 
the kind of low-level parallelism found in neural nets (although such neural mechanisms are 
part of the infrastructure). Rather there seem to be many functionally distinct modules 
performing different sorts of tasks concurrently, a significant proportion of them are 
concerned with the monitoring and control of bodily mechanisms, for example, posture, 
saccades, grasping, temperature control, daily rhythms, and so on. 

The very oldest mechanisms in the human architecture are probably all reactive in the 
sense described in various recent papers (e.g., Sloman, 2000). The key feature of reactivity 
is the lack of “what-if“ reasoning capabilities, with all that entails, including the lack of 
temporary workspaces for representations of hypothesized futures (or past episodes); the 
lack of mechanisms for stored factual knowledge (generalizations and facts about 
individuals) to support the generation of possible futures, possible actions, and likely 
consequences of possible actions; and the lack of mechanisms for manipulating        
explicit representations.  

Both reactive and deliberative mechanisms require perceptual input and can generate 
motor signals. However, to function effectively, both perceptual and action subsystems may 
have evolved new layers of abstraction to support the newer deliberative processes, for 
example, by categorizing both observed objects and events at a higher level of abstraction, 
and allowing higher-level action instructions to generate behavior in a hierarchically 
organized manner. More generally, different subsystems use information for different 
purposes so that a number of different processes of analysis and interpretation of sensory 
input occur in parallel, extracting different affordances from raw data  from the optic array. 
Recent work by brain scientists on ventral and dorsal visual pathways are but one 
manifestation of this phenomenon. 

The interactions between reactive and deliberative layers are complex and subtle, 
especially as neither is in charge of the other, though at times either can dominate. 
Moreover, the division is not absolute: information in the deliberative system can sometimes 
be transferred to the reactive system (e.g., via drill and practice learning), and information in 
the reactive system can sometimes be decompiled and made available to deliberative 
mechanisms (though this is often highly error-prone). 

                                                 
3 This section was drafted by Aaron Sloman and revised by the authors. 
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For reasons explained in various papers available in the CogAff FTP site, it is possible 
to conjecture that at a much later evolutionary stage a third class of mechanism developed, 
again using and redeploying mechanisms that had existed previously. The new type of 
mechanism, which has been provisionally labeled “meta-management,” provides the ability 
to do for internal processes what the previous mechanisms did for external processes: 
namely it supports monitoring, evaluation, and control of other internal processes, including, 
for instance, thinking about how to plan, or planning better ways of thinking. For example, a 
deliberative system partly driven by an independent reactive system and sensory 
mechanisms can unexpectedly acquire inconsistent goals. A system with meta-management 
can notice and categorize such a situation, evaluate it, and perhaps through deliberation or 
observation over an extended period, develop a strategy for dealing with such conflicts. 

Similarly, meta-management can be used to detect features of thinking strategies and, 
perhaps in some cases, notice flaws or opportunities for improvement. Such a mechanism 
(especially in conjunction with an external language) also provides a route for absorption of 
new internal processes from a culture, thereby allowing transmission between generations of 
newly acquired information without having to wait for new genetic encodings of that 
information to evolve. Through internal monitoring of sensory buffers, the extra layer adds a 
kind of self-awareness that has been the focus of discussions of consciousness, subjective 
experience, qualia, etc. As with external processes, the monitoring, evaluation, and re-
direction of internal processes is neither perfect nor total and, as a result, mistakes can be 
made about what is going on, inappropriate evaluations of internal states can occur, and 
attempts to control processing may fail, for example, when there are lapses of attention 
despite firm intentions. 

Another feature of meta -management is its ability to be driven by different collections 
of beliefs, attitudes, strategies, and preferences, in different contexts, explaining how a 
personality may look different at home, driving a car, in the office, etc. Besides the three 
main concurrent processing layers (reactive, deliberative, and meta-management) identified 
above that others have found evidence for, a number of additional specialized mechanisms 
are needed, including: mechanisms for managing short- and long-term goals, a variety of 
long- and short-term memory stores, and one or more global alarm systems capable of 
detecting a need for rapid global re-organization of activity (freezing, fleeing, attacking, 
becoming highly attentive, etc.), and also producing that re-organization. 

For instance, whereas many people have distinguished primary and secondary emotions 
(e.g., Damasio, 1994), Sloman and his colleagues have proposed a third type, tertiary 
emotions, sometimes referred to as perturbances (Sloman, 1998a; Sloman & Logan, 1999). 
Primary emotions rely only on the reactive levels in the architecture. Secondary emotions 
require deliberative mechanisms. Tertiary emotions are grounded in the activities of meta-
management, including unsuccessful meta-management. There are other affective states 
concerned with global control, such as moods, which also have different relationships to the 
different layers of processing. Many specific states that are often discussed but very 
unclearly defined, such as arousal, can be given much clearer definitions within the 
framework of an architecture that supports them. 

It looks as if various subsets of the capabilities described here arising out of the three 
layers and their interactions can be modeled in the architectures developed so far, for 
example, Soar, ACT-R/PM, Moffatt and Frijda’s Will architecture (2000), and the various 



Chapter 5.  Recent Developments for Modeling  

Human Systems IAC SOAR, 2002 39 

logic-based models that dominate the ATAL (Architectures, Theories and Languages) series 
of workshops (e.g., Wooldridge, Mueller, & Tambe, 1996, also see mas.cs.umass.edu/atal/), 
and books like Wooldridge and Rao (1999). 

However, only small subsets of these capabilities can be modeled at present. Any 
realistic model of human processing needs to be able to cope with contexts including rich 
bombardment with multi-modal sensory and linguistic information; where complex goals 
and standards of evaluation are constantly interacting; where things often happen too fast for 
fully rational deliberation to be used; where everything that occurs does not always fall into 
a previously learned category for which a standard appropriate response is already known; 
where decisions have to be taken on the basis of incomplete or uncertain information; and 
where the activity of solving one problem or carrying out one intricate task can be subverted 
by the arrival of new factual information, new orders, or new goals generated internally as a 
side-effect of other processes. 

Where the individual is also driving a fast-moving vehicle or is under fire then it is very 
likely that a huge amount of the processing going on will involve the older reactive 
mechanisms, including many concerned with bodily control and visual attention. It may be 
some time before we fully understand the implications of such total physical immersion in 
stressful situations, including the effects on deliberative and meta-management processes. 
(For example, fixing attention on a hard planning problem can be difficult if bombs are 
exploding all around you. Can our models explain why?) 

5.5.2 Sim_Agent and CogAff 

Sloman and his colleagues’ general architectural toolkit, the Sim_Agent Toolkit , allows 
them to explore a variety of new ideas about complex architectures. It is not an architecture, 
but a steadily developing toolkit for exploring architectures. 

The CogAff architecture provides a schema, based on a 3 by 3 grid that provides a 
framework for describing specific architectures according to the grid components present, 
their control relationships, and how information flows between them. H-CogAff is a specific 
human-like version that is a particularly rich special case. Other special cases include 
various kinds of purely reactive (i.e., non-deliberative) architectures (perhaps insects or 
reptiles), Brooks’ subsumption architectures, purely deliberative architectures (lots of old AI 
systems, early versions of Soar and ACT), and so on. 

Sloman and his colleagues also wanted a toolkit that supported exploration of a number 
of interacting agents (and physical objects, etc.) where each agent has a variety of very 
different mechanisms running concurrently and asynchronously, yet influencing one 
another. They also wanted to be able to very easily change the architecture within an agent, 
change the degree and kind of interaction between components of an agent, and speed up or 
slow down the processing of one or more sub-mechanisms relative to others (Sloman, 
1998b). In particular, they wanted to be able to easily combine different types of symbolic 
mechanisms and also sub-symbolic mechanisms within one agent. The toolkit was also 
required to support rapid prototyping and interactive development with close connections 
between internal processes and graphic displays. 

Because other toolkits did not appear to have the required flexibility and tended to be 
committed to a particular type of architecture, Sloman and his colleagues built their own 
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toolkit, which has been used for some time at the University of Birmingham and DERA, 
Malvern. Their toolkit is described briefly in Sloman and Logan (1999) and in more            
detail in the online documentation at the Birmingham Poplog FTP site 
(ftp.cs.bham.ac.uk/pub/dist/poplog/). The code and documentation are freely available online. 
The toolkit runs in Pop-11 in the Poplog system (inherently a multi-language AI system, so that 
code in Prolog, Lisp, or ML can also be included in the same process). Poplog has become 
freely available (www.cs.bham.ac.uk/research/poplog/freepoplog.html). 

At present, Sloman does not propose a specific overarching architecture as a rival to 
systems like Soar or ACT-R. He feels that not enough is yet known about how human minds 
work and, consequently, any theory proposing the architecture is premature. Instead, he and 
his group have been exploring and continually refining a collection of ideas about possibly 
relevant architectures and mechanisms. Although the ideas have been steadily developing, 
Sloman and his colleagues do not believe that they are near the end of this process. So, 
although one could use a label like CogAff to refer to the general sort of architecture they are 
currently talking about, it is not a label for a fixed design. Rather CogAff should be taken to 
refer to a high-level overview of a class of architectures in which many details still remain 
unclear. The CogAff ideas are likely to change in dramatic ways as more is learned about 
how brains work, about ways in which they can go wrong (e.g., as a result of disease, aging, 
brain damage, addictions, stress, abuse in childhood, etc.), and how brains differ from one 
species to another, or one person to another, or even within one person over a lifetime.  

The toolkit is still being enhanced. In the short term, they expect to make it easier to 
explore architectures including meta-management. Later work will include better support 
for sub-symbolic spreading activation mechanisms and the development of more reusable 
libraries, preferably in a language-independent form. 

5.5.3 Summary 

The Sim_Agent toolkit and the goals its developers have for it have some commonalties 
with other approaches. The need for a library of components is acknowledged. They 
emphasize that reactive behaviors are necessary and desirable, and that the emotional 
aspects arise out of the reactive mechanisms. It provides a broad range of support for testing 
and creating architectures. The toolkit provides support for reflection as a type of meta-
learning. Other architectures will need to support reflection as well, particularly where the 
world is too fast-paced for learning to occur during the task (John, Vera, & Newell, 1994; 
Nielsen & Kirsner, 1994). 

The features that the toolkit supports help define a description of architectural types. 
The capabilities that can be provided, from perception to action and from knowledge to 
emotion, provide a way of describing architectures. 

The major drawback is that none of the models or libraries created in Sim_Agent have 
been compared with human data directly. In defense of this lack of comparison, Sloman 
claims that the more complex and realistic an architecture becomes, the less sense it makes 
to test it directly. Instead, he claims that the architecture has to be tested by the depth and 
variety of the phenomena it can explain, like advanced theories in physics, which also 
cannot be tested directly. 
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5.6 Engineering-Based Architectures and Models 

There is a history of studying process control in and near industrial engineering that 
includes studying human operators. This approach is not (yet) part of mainstream 
psychology, and Pew and Mavor (1998) do not make many references to work in this field. 

If tank operators and ship captains can be viewed as running a process, and we believe 
they can, there is a wide range of behavioral regularities referenced and modeled in 
engineering psychology that can be generalized and applied to other domains. Major 
contributions in this area include Reason’s (1990) book on errors, Rasmussen’s skill 
hierarchy (1983), the Cognitive Reliability and Error Analysis Method (CREAM) 
methodology for analyzing human performance (Hollnagel, 1998), and numerous studies 
characterizing the strengths and weaknesses of human operator behavior (de Keyser & 
Woods, 1990; Sanderson, McNeese, & Zaff, 1994). 

Engineers have also created intelligent architectures. These architectures have almost 
exclusively been used to create models of users of complex machinery, ranging from 
nuclear power plants to airplanes. The models are often, but not always, tied to simulations 
of those domains. Their approach is generally more practical. They are more interested in 
approximate timing and the overt behavior than in detailed mechanisms. These developers 
appear to be less interested in the internal mechanisms giving rise to behavior as long as the 
model is usable and approximately correct. 

These models of operators include models of nuclear power plant operators, the 
Cognitive Simulation Model (COSIMO; Cacciabue et al., 1992), and the Cognitive 
Environment Simulation (CES; Woods , Roth, & Pople , 1987). AIDE (Amalberti & Deblon, 
1992) is a model of fighter pilot behavior; the Step Ladder Model or Skill-based, Rule-
based, Knowledge-based model is a generally applicable framework, originally formulated 
in electronics troubleshooting (e.g., Rasmussen, 1983). 

We will also look at a few operator models in more detail. 

5.6.1 APEX4 

APEX (Freed & Remington, 2000; Freed et al., 1998; John et al., 2002) is a set of tools 
for simulating human performance when interacting with interfaces to perform tasks similar 
to MIDAS (Laughery & Corker, 1997). The main driver for APEX is the need to model 
behavior in environments, such as air traffic control and commercial jet flight decks, and to 
help engineers design usable systems in these domains 

Powerful action-selection mechanisms of the sort developed by artificial intelligence 
researchers are used to cope adaptively with time-pressure and uncertainty, and to 
coordinate the execution of multiple tasks (i.e., strategic multi-tasking). Usability is taken 
very seriously (Freed & Remington, 2000). A high-level modeling language is included. 
Applications of APEX have included time-analysis of skilled behavior, partially-automated 

                                                 
4 Comments from Michael Freed were helpful in preparing this section.  
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human-factors design analysis, and creation of artificial human participants in                
large-scale simulations. 

This general approach has proven successful in allowing APEX to automate the CPM-
GOMS HCI analysis method (John & Kieras, 1996) and for reconstructing incidents 
involving human error in a way that promise eventual error-prediction capabilities. As much 
as it implements CPM-GOMS, it inherits CPM-GOMS’ empirical support. Consistent with 
the needs of domains in which APEX has been most frequently used, the action-selection 
architecture emphasizes capabilities having to do with multi-task management, especially 
regarding concurrency control and strategic task management. 

APEX was created by Freed as part of his doctoral dissertation and continues to be 
developed by researchers at NASA Ames Research Center and elsewhere. They are 
explicitly concerned about building a community of users to share ideas and models. Further 
information, including APEX itself, is available through search engines. 

APEX is probably best described as an engineering model because it has been designed 
to serve engineering goals. APEX is interesting because it models the whole operator, from 
perception to action, and the model often interacts with fairly complete and complex 
simulations, and can make very detailed predictions easily. It does not yet include learning, 
and the complex results past CPM-GOMS could be tested more, but the full toolset suggests 
that interface design tools based on cognitive models are now possible. 

5.6.2 Simplified Model of Cognition and Contextual Control Model 

The Simplified Model of Cognition (SMoC) (Hollnagel & Cacciabue, 1991) is an 
extension of Neisser’s (1976) perceptual cycle  and describes cognition in terms of four 
essential elements: (1) observation/identification, (2) interpretation, (3) planning/selection, 
and (4) action/execution. Although these are normally linked in a serial path, other links are 
possible between the various elements. The small number of cognitive functions in SMoC 
reflects the general consensus of opinion that has developed since the 1950s on the 
characteristics of human cognition. The fundamental features of SMoC are the distinction 
between observation and inference (overt vs. covert behavior), and the cyclical nature of 
cognition (cf. Neisser, 1976). 

SMoC was formulated as part of the System Response Generator (SRG) project 
(Hollnagel & Cacciabue, 1991). SRG was a software tool developed to study the effect of 
human cognition (specifically actions and decision making) on the evolution of incidents in 
complex systems. 

The Contextual Control Model (CoCoM; Hollnagel, 1993) is an extension of the SMoC, 
and addresses the issues of modeling both competence and control. In most models the issue 
of competence is supported by a set of procedures or routines that can be employed to 
perform a particular task when a particular set of pre-defined conditions obtains. CoCoM 
further proposes that there are four overlapping modes of control—influenced by knowledge 
and skill levels—that also influence behavior: 
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• Scrambled control: where the selection of the next action is unpredictable. This is 
the lowest level of control. 

• Opportunistic control: where the selection of the next action is based on the current 
context without reference to the current goal of the task being performed. 

• Tactical control: where performance is based on some form of planning. 

• Strategic control: where performance takes full account of higher-level goals. This 
is the highest level of control. 

The transition between control modes depends on a number of factors, particularly the 
amount of subjectively available time and the outcome of the previous action. These two 
factors are interdependent, however, and also depend on aspects such as the task complexity 
and the current control mode. 

CoCoM has been used in the development of the CREAM (Hollnagel, 1998) within the 
field of human reliability analysis. The CREAM is a method for analyzing human 
performance when working with complex systems. It can be used in both the retrospective 
analysis of accidents and events, and in predicting performance for human reliability 
assessment. Extending the CREAM is presented below as a useful project. 

5.6.3 Summary 

These engineering-based architectures suggest that engineering models can provide 
useful behavior even when the internal mechanisms are not fully tested or perhaps even 
plausible. These architectures suggest that some of the difficulty in creating the architectures 
is due to the implicit and explicit knowledge that psychologists bring with them regarding 
plausibility. We believe psychologists’ domain knowledge leads to more accurate models 
but slower development. 

5.7 Summary of Recent Developments for Modeling Behavior 

This chapter has reviewed several architectures. These architectures and their 
applications show that it is becoming increasingly possible to create plausible and useful 
architectures based on a variety of approaches. 

An agreed, formal scheme for classifying architectures would be useful. This ideal 
system classification would note the sorts of tasks that each architecture performs best, 
supporting users to choose an architecture for a particular task. The best that we have found 
is Table 3.1 in Pew and Mavor (1998, pp. 98-105). Our Table 5.1 provides a summary of the 
architectures presented here in that same format as a supplement to their table. We have 
included all relevant information of which we are aware for each architecture. In most cases 
the developers of the architectures have helped complete their entry in this table. Another 
approach for classifying architectures is available from Logan (1998). 

Developments in AI continue to be useful. The general AI methods discussed are not 
included in this table because they are not broad enough to be considered a cognitive 
architecture, but they are likely to be useful additions to architectures, either directly or 
indirectly. For example, genetic algorithms have been included in a proposed architecture 
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(Holland, Holyoak, Nisbett, & Thagard, 1986), and planning algorithms have been included 
as adjuncts to Soar (Gratch, 1998). These developments will help extend architectures by 
providing algorithms for inclusion within architectures, particularly hybrid architectures. 

There are several interesting trends to note. One is that the diversity of architectures is 
not decreasing. New, fundamental ideas on which to base architectures has widened from 
simply problem solving. For example, EPAM is based on pattern recognition, and PSI and 
architectures created in the Sim_Agent Toolkit are based on ideas about emotions.  

Another interesting trend is that some aspects of the architectures are starting to merge 
and be reused. The interaction aspects of EPIC have been reused by Soar and by ACT-R. 
The Nottingham Interaction Architecture is similar in some ways and getting similar reuse 
(e.g., Jones et al., 2000). These strands are becoming quite similar to each other (Byrne, 
Chong, Freed, Ritter, & Gray, 1999) and are quite likely to merge in the future. 

The importance of model usability is becoming more recognized. COGENT provides an 
example of how easy a modeling tool should be to pick up and use. Similar developments 
with Soar and ACT-R are starting to emphasize reusable code, better documentation, and 
better tutorial materials. Other architectures will have to follow suit to attract users and to 
train and support their existing users. Newell (1990) wrote about the entry level (the bar) 
being raised as architectures develop through competition. It is interesting that usability is 
perhaps the first clear comparison level. 
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Table 5.1: Comparison of Architectures 

  Submodels 

Architecture Original purpose Sensing and perception 

1 EPAM Model high-level perception, 
learning, and memory 

Visual, auditory perceptual discrimination in 
real-time (assuming feature-based description 
of objects) 

2 SDM Simulation of cerebellum as a 
content-addressable memory 

Can be used to recall the nearest stored 
memory to any encoded perceptual input 

3 PSI Explores interaction of cognition, 
motivation, and emotion to build an 
integrated model of human action 
regulation 

Optical perception by “Hypercept” process that 
scans (simulated) environment for basic 
features. Raises hypotheses about sensory 
schemas to which features may belong and 
tests these hypotheses by subsequent 
scanning of environment (comparable to 
saccadic eye-movements). If pattern not 
recognizable, new schema generated 

4 COGENT Design environment for modeling 
cognitive processes 

Input buffers that can be modified to represent 
vision and hearing 

5 JACK as example of BDI  
architectures  

Constitute an industrial-strength 
framework for agent applications  

JAVA methods + inter-agent messaging 

6 Sim_Agent Toolkit Explores architectures using rapid 
prototyping 

Defined by methods for each agent class. 

7 Engineering-based 
models (e.g., APEX) 

Provide models of humans in control 
loops 

Varies, but exists for most models 
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Table 5.1: Comparison of Architectures (continued) 

 Submodels   

 Working/ 
Short-Term memory 

Long-Term Memory Motor Outputs 

1 4-7 slot STM; in some 
versions (e.g., EPAM- IV), 
more detailed 
implementation of auditory 
(Baddeley-like) STM & visual 
STM 

Discrimination net. In recent versions, 
nodes of discrimination net used to 
create semantic net and productions 

Eye movements, simple drawing 
behavior 

2 Not modeled Sparse Distributed Memory models 
related to PDP and neural-net 
memory models 

Motor sequences  can be learned. 
Nearest match memories can be 
sequences that could be 
behaviors 

3 The head of a protocol 
memory that permanently 
makes a log of actions and 
perceptions  

The remnants of logs decay with time. 
Strings of logs associated with need 
satisfaction or with pain will be 
reinforced and have a greater chance 
to survive and form a part of long-term 
memory than neutral sequences of 
events  

Basic motor patterns (actions) 
combined to form complex 
sensory-motor-programs by 
learning (i.e., by reinforcement of 
the successful sensory-motor-
patterns in logs) 

4 Various types supported Various types supported Simple buffer representation of 
commands 

5 Object-oriented structures 
(JAVA), plus relational 
modeling support (JACK) 

All JAVA support including database 
interfaces etc. Support for data 
modeling in JAVA and C++ using 
JACOB (JACK Object Builder) 

JAVA methods 

6 List structures  List structures, rules, and arbitrary 
Pop-11 data structures. Can also use 
neural nets, if required 

Defined by methods for each 
agent class 

7  Usually simple, but extant Usually simple, but extant Usually extant, but usually not 
complex 
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Table 5.1: Comparison of Architectures (continued) 

 Knowledge Representation  

Architecture Declarative Procedural 

1 EPAM Chunks, schemas (templates); using nodes 
in discrimination net 

Productions using nodes in 
discrimination net 

2 SDM A sparse set of memory addresses where 
data are addresses  

Memories naturally form sequences  
that could be considered procedures 

3 PSI Sensory and sensory-motor patterns 
consisting of pointer structures forming 
schemas. A schema includes information 
about more basal elements and relations of 
elements in space and time, including 
language patterns pointing to sensory and 
sensory-motor patterns (implementation in 
progress) 

Sensory-motor-patterns forming 
automatisms  

4 COGENT Numbers, strings, lists, tuples, connectionist 
networks 

Production rules, connectionist 
networks, Prolog 

5 JACK as an example of 
BDI architectures  

Object-oriented structures (JAVA), plus 
relational modeling support 

JACK plans and JAVA methods 

6 Sim_Agent Toolkit List structures and arbitrary Pop-11 data 
structures (e.g., could be constrained to 
express logical assertions but need not be). 
Could use neural nets or other mechanisms  

Rule sets and arbitrary Pop-11 
procedures  that can also inv oke Prolog 
or external functions  

7 Engineering-based 
models  (e.g., APEX) 

Varies, but usually simple Varies, but usually simple. Many use 
some form of schemas 
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Table 5.1: Comparison of Architectures Covered (continued) 

 Higher-Level Cognitive Functions   

 Learning Planning Decision Making Situation 
Assessment 

1 Chunking, creation of 
schemas, and production 
learning online (incremen-
tal) and stable against 
erroneous data 

Connections between tem-
plates used in planning 

Knowledge based Overt and inferred 

2 By incrementing weights 
across a probability 
distribution 

Does not plan, but can 
remember plans 

Iterative memory recall 
process 

Can learn a set of 
assessments and 
generalize these 

3 Associative and perceptual 
learning; operant 
conditioning: sensory-motor 
learning, learning goals 
(situations that allow need 
satisfaction) and aversions 
(situations or objects that 
cause needs) 

Built-in hill-climbing proce-
dure: action schemata (i.e., 
sensory-motor-patterns) are 
recombined to form new 
plans. If planning unsuc -
cessful or impossible due to 
lack of information, trial-
and-error procedures  used 
to collect environmental 
information 

Expectancy-value-
principle 

Built in as part of problem 
solving 

4 Common methods within 
connectionist modules 

Could be implemented in 
rule modules 

Specific to module type. 
Can vary 

None built in            
(users can specify) 

5 None built in                
(users can specify as 
required by their 
architecture) 

None built in                
(users can specify as 
required by their 
architecture) 

Includes BDI 
computation model 

Includes BDI 
computation model 

6 None built in                 
(e.g., Wright et al. 1996, 
included simple forms of 
deliberative mechanisms 
and meta-management) 

None built in               
(users can specify as 
required by their 
architecture). Logan’s A* 
with bounded constraints 
available, among others 

None built in         
(users can specify as 
required by their 
architecture) 

None built in           
(users can specify as 
required by their 
architecture) 

7 Usually not extant Varies, some models do 
well 

Usually good; decision 
making domain of these 
models 

Varies, often implicit 
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Table 5.1: Comparison of Architectures (continued) 

 Multitasking  

Architecture Serial/Parallel Resource Representation 

1 EPAM Serial processing; learning done in 
parallel 

Limited STM capacity, limited perceptual 
and motor resources (uses time 
parameters) 

2 SDM Fully parallel recall process, serial 
recall of sequences  

Architecture too low -level for 
representation to be explicit 

3 PSI System tries to fulfill different needs 
(i.e., water, energy, pain-avoidance, 
etc.); interrupts goal-directed 
behavior to profit from unexpected 
opportunities 

Allocation of time to run intention according 
to strength of underlying need and 
according to expectancy of success 

4 COGENT Modules can work in parallel, but 
information passed between them 
serially 

Would vary with the knowledge included in 
modules 

5 JACK as an example of BDI 
architectures  

Supports multiple computational 
threads handled safely within the 
JACK Kernel—achieving atomic 
reasoning steps  

Agents have time perception. Time can be 
real or simulated (dilated, externally 
synchronized, etc.) 

6 Sim_Agent Toolkit Discrete event simulation technique, 
with rule sets  within each agent time-
sliced, as well as different agents 
being time-sliced 

Allocation of cycles per time-slice can be 
made for each rule set, or for each agent. 
No built-in memory resource limits. Will 
differ for each architecture type created 

7 Engineering-based models         
(e.g., APEX) 

Varies, sometimes explicit models Varies. Those that interact with simulations 
more advanced 
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Table 5.1: Comparison of Architectures (continued) 
  Multiple Human Modeling Implementation Platform 

 Goal/Task Management   

1 Bottom up + 1 main goal 
per task simulated 

Potential through multiple EPAM 
modules 

Mac, PC (any system supporting 
Common Lisp). Graphic environment 
supported only for Macintosh 

2 None None UNIX (easily ported) 

3 There is a steady 
competition of different 
needs/motives to rule. 
Strongest will win and 
inhibit others 

Potential through multiple PSI 
models with different 
“personalities” by varying starting 
parameters. Multiple agents can 
run in same environment, see 
each other, interact, and, to a 
certain degree, communicate 

Windows 95, 98, 2000, NT 

4 None built in. Users can 
specify through module 
selection and 
programming 

None UNIX (X windows). Microsoft Windows 

5 Built in. JACK Language 
includes: wait_for 
(condition), maintenance 
conditions, meta-level 
reasoning, etc. 

Allows multiple agents, running 
together or distributed, to interact 
and communicate as a team or as 
adversaries. Extensions to the 
basic model (e.g., team models 
also allowed) 

Runs on all platforms that support JAVA 
1.1.3 or later. Graphic components (i.e., 
development environment) require JAVA 
2 v 1.2 or later 

6 None built in               
(users can s pecify as 
required by the 
architecture) 

Toolkit allows multiple agents to 
sense one another, act on one 
another, and communicate with 
one another 

Runs on any system supporting Poplog 
(and for graphics, X window system). 
Tested on Sun/Solaris, PC/Linux, DEC 
Alpha/UNIX. Should also run on other 
UNIXes and VAX VMS. Should work 
without graphics on Windows NT Poplog 

7 Varies. Some advanced Some have none; some work in 
teams 

Varies. Not usually designed for 
dissemination 
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Table 5.1 Comparison of Architectures (continued) 

Architecture Implementation Language Support Environment 

   

1 EPAM Common Lisp Lisp programming + editing tools. Some 
graphic utilities for displaying eye 
movements, structure of discrimination 
tree, and task. Customized code used for 
each task modeled 

2 SDM C, JAVA None 

3 PSI Pascal (Delphi 4) Delphi 4 features 

4 COGENT Prolog Graphic and textual editors 

5 JACK as an example of BDI 
architectures  

JAVA. JACK written in and 
compiles into pure JAVA 

JACK Make utilities, and all available 
JAVA tools. JACK development 
environment (JDE) provides GUI for 
creating and editing agent structures. 
Further debugging and visualization tools 
under development 

6 Sim_Agent Toolkit Pop-11 (but allows invocation of 
other Poplog languages (Prolog, 
Common Lisp, Standard ML, & 
external functions, e.g., C) 

Poplog environment, including 
VED/XVED, libraries, incremental 
compiler, etc 

7 Engineering-based models   
 (e.g., APEX) 

Varies  Often simple 
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Table 5.1: Comparison of Architectures (continued) 

   

 Validation Comments 

1 Extensive at many levels  EPAM models focus on single, specific 
information processing task at a time. Not yet 
scaled up to multitasking situations. Used in 
high-knowledge domains (e.g., chess, with 
about 300,000 chunks) 

2 None SDM should be seen as system component 
(e.g., good way of representing long-term 
memory for patterns and motor behaviors in 
larger system) 

3 Achievement data and parameters of behavior 
compared between subjects and models in two 
different scenarios (BioLab and Island). Different 
human subjects can be modeled by varying 
parameters 

 

4 Would be by architecture. Some have been done by 
modeling previously validated models 

 

5 Would be by architecture. None known  

6 Would be by architecture. None known  

7 By model. Usually validated with expert opinion. Some 
may be compared with data 

Wide range of models here 


